

Phenolic profile of petals decoct from new genotypes of garden rose grown in Vojvodina Fenolni profil dekokta latica novih genotipova baštenskih ruža gajenih u Vojvodini

Nemanja Đ. Živanović¹, Marija M. Lesjak¹, Biljana Z. Božanić Tanjga², Dejan Z. Orčić¹, Mirjana Z. Ljubojević², Nataša Đ. Simin¹

¹University of Novi Sad Faculty of Sciences, Serbia ²University of Novi Sad Faculty of Agriculture, Serbia

Introduction

Garden roses are cultivated across the world and are used for the isolation of essential oil [1]. After the isolation of essential oil by hydrodistillation, decoct stays as a byproduct. This study aimed to evaluate the potential of decoct as a source of pharmacologically active compounds and reduce waste during rose essential oil production.

Kesults			
Compound (mg/g dw)	Rose 3	Rose 8	Rose 10
p-OH benzoic acid	0.067ª	0.006 ^b	0.012 ^b
Protocatechuic acid	0.418 ^b	4.362 ^a	0.087 ^c
Vanillic acid	0.009	<0.005*	/**
Gallic acid	43.63°	146.2 ^b	203.6ª
Syringic acid	<0.010	<0.010	<0.010
Sinapic acid	0.027	<0.010	<0.010
p-Coumaric acid	0.032ª	0.006 ^b	0.004 ^b
o-Coumaric acid	/	/	<0.001
Caffeic acid	0.003	<0.002	<0.002
Ferulic acid	0.004	<0.002	<0.002
Chlorogenic acid	0.010 ^a	<0.005	0.009 ^a
Umbelliferone	<0.001	/	/
Scopoletin	<0.001	<0.001	<0.001
Quercetin	0.112 ^c	0.144 ^b	0.251ª
Hyperosid + Isoquercitrin	4.785 ^b	1.549°	9.079ª
Rutin	0.190 ^b	0.246 ^b	1.606 ^a
Quercitrin	1.208 ^b	2.050 ^b	10.11 ^a
Kaempferol	1.089 ^a	0.018 ^c	0.131 ^b
Kaempferol-3-O-Glc	44.29 ^a	0.314 ^c	13.65 ^b
Catechin	0.204ª	0.141 ^b	0.024 ^c
Naringenin	0.003ª	0.003ª	0.001 ^b
Isorhamnetin	<0.005	/	<0.005
Apigenin	<0.001	<0.001	<0.001
Apigenin-7-O-Glc	<0.001	<0.001	<0.001
Vitexin	<0.002	<0.002	<0.002
Baicalein	<0.039	/	<0.039
Luteolin	<0.002	<0.002	<0.002
Luteolin-7-O-Glc	/	<0.002	/
Chrysoeriol	<0.0003	< 0.0003	0.001
Epigallocatechin-gallate	<0.039	<0.039	<0.039
Apiin	<0.001	<0.001	< 0.001
Amenthoflavon	<0.001	<0.001	<0.001
Quinic acid	25 23°	83 91ª	63 41 ^b

*beneath LOQ

**beneath instruments LOD Letters a-c signify the difference between results (p<0.05)

Acknowledgments

This study was supported by the Provincial Secretariat for Higher Education and Scientific Research, Autonomous Province of Vojvodina (Grant No. 142-451-2658/2021-01/1).

References

B. Božanić Tanjga, et al., *Horticulturae*. **2022**, *8*, 895.
D. Orčić, et al., *Food Chem*. **2014**, *143*, 48-53.

Materials and methods

Decocts obtained after the isolation of essential oils from petals of 3 new genotypes of garden roses grown in Vojvodina were selected and their chemical composition was determined by the LC-MS-MS [2].

Rose 3

Rose 10

Conclusions

- Out of 45 analyzed compounds, 36 were present in petals decocts
- Decocts are a good source of gallic acid, especially rose 10
- Quinic acid is also present in high amounts in decocts, with the highest content detected in rose 8
- Rose petals decocts are rich in flavonoid glycosides, such as kaempferol-3-O-Glc, quercitrin, hyperosid, isoquercitrin and rutin
- Decoct of rose petals is a rich source of phenolics and could be a source of biologically active compounds for the cosmetic industry and their usages could contribute to the reduction of industrial waste

